Mps1 Mediated Phosphorylation of Hsp90 Confers Renal Cell Carcinoma Sensitivity and Selectivity to Hsp90 Inhibitors
نویسندگان
چکیده
The molecular chaperone Hsp90 protects deregulated signaling proteins that are vital for tumor growth and survival. Tumors generally display sensitivity and selectivity toward Hsp90 inhibitors; however, the molecular mechanism underlying this phenotype remains undefined. We report that the mitotic checkpoint kinase Mps1 phosphorylates a conserved threonine residue in the amino-domain of Hsp90. This, in turn, regulates chaperone function by reducing Hsp90 ATPase activity while fostering Hsp90 association with kinase clients, including Mps1. Phosphorylation of Hsp90 is also essential for the mitotic checkpoint because it confers Mps1 stability and activity. We identified Cdc14 as the phosphatase that dephosphorylates Hsp90 and disrupts its interaction with Mps1. This causes Mps1 degradation, thus providing a mechanism for its inactivation. Finally, Hsp90 phosphorylation sensitizes cells to its inhibitors, and elevated Mps1 levels confer renal cell carcinoma selectivity to Hsp90 drugs. Mps1 expression level can potentially serve as a predictive indicator of tumor response to Hsp90 inhibitors.
منابع مشابه
Hsp90 inhibition suppresses mutant EGFR-T790M signaling and overcomes kinase inhibitor resistance.
The epidermal growth factor receptor (EGFR) secondary kinase domain T790M non-small cell lung cancer (NSCLC) mutation enhances receptor catalytic activity and confers resistance to the reversible tyrosine kinase inhibitors gefitinib and erlotinib. Currently, irreversible inhibitors represent the primary approach in clinical use to circumvent resistance. We show that higher concentrations of the...
متن کاملCasein kinase 2 phosphorylation of Hsp90 threonine 22 modulates chaperone function and drug sensitivity
The molecular chaperone Heat Shock Protein 90 (Hsp90) is essential for the function of various oncoproteins that are vital components of multiple signaling networks regulating cancer cell proliferation, survival, and metastasis. Hsp90 chaperone function is coupled to its ATPase activity, which can be inhibited by natural products such as the ansamycin geldanamycin (GA) and the resorcinol radici...
متن کاملHeat-shock protein 90 (Hsp90) as a molecular target for therapy of gastrointestinal cancer.
Anticancer drug development strategies critically involve the identification of novel molecular targets which are crucial for tumorigenesis and metastasis. In this context, the molecular chaperone heat-shock protein 90 (Hsp90) has gained interest as a promising anticancer drug target, due to its importance in maintaining the stability, integrity, conformation and function of key oncogenic prote...
متن کاملRoles of 3-phosphoinositide-dependent kinase 1 in the regulation of endothelial nitric-oxide synthase phosphorylation and function by heat shock protein 90.
The 90-kDa heat shock protein (Hsp90) plays an important role in endothelial nitric-oxide synthase (eNOS) regulation. Besides acting as an allosteric enhancer, Hsp90 was shown to serve as a module recruiting Akt to phosphorylate the serine 1179/1177 (bovine/human) residue of eNOS. Akt is activated by the phosphorylation of 3-phosphoinositide-dependent kinase 1 (PDK1). Whether PDK1 is involved i...
متن کاملZAP-70 is a novel conditional heat shock protein 90 (Hsp90) client: inhibition of Hsp90 leads to ZAP-70 degradation, apoptosis, and impaired signaling in chronic lymphocytic leukemia.
The zeta-associated protein of 70 kDa (ZAP-70) is expressed in patients with aggressive chronic lymphocytic leukemia (CLL). We found that ZAP-70+ CLL cells expressed activated heat-shock protein 90 (Hsp90) with high binding affinity for Hsp90 inhibitors, such as 17-allyl-amino-demethoxy-geldanamycin (17-AAG), whereas normal lymphocytes or ZAP-70- CLL cells expressed nonactivated Hsp90. Activate...
متن کامل